
Deep Learning Spring 2017, Project Report

Image Compression Using Deep Learning

 H. Kubra Cilingir, Sivaramakrishnan Sankarapandian, M. Ozan Tezcan
kubra@bu.edu​, ​sivark@bu.edu​,​mtezcan@bu.edu

Figure 1. (left) our best performing algorithm (CNN-AE-FT), (right) original image

1. Task
Image compression has an important role in data
transfer and storage, especially due to the data
explosion that is increasing significantly faster than
Moore’s Law.[1] It is a challenging task since there are
highly complex unknown correlations between the
pixels, as a result, it is hard to find and recover them.
We want to find a well-compressed representation for
images and, design and test networks that are able to
recover it successfully in a lossless or lossy way.

2. Related Work
Several neural networks and deep learning methods
have been utilized for the purpose of image comp-
ression. [2] summarizes most of the neural network
approaches for image compression that are proposed
before 1999. However, in those years there were no
efficient deep learning algorithms. Toderici et al.
proposed one of the most successful deep learning
approaches for this aim [3]. They used a recurrent
neural network (RNN) architecture and achieved
slightly better performance than JPEG. They
addressed the problem of JPEG compression for small
images where the amount of redundant information is

small. This network follows the classical three stages
process of compression: encoding, quantization and
decoding. Encoding and decoding are done iteratively
using two different architecture of RNNs, Long Short
Term Memory (LSTM) and convolutional/
deconvolutional LSTMs. The advantage of this method
is that the compression ratio can be increased
progressively while the disadvantage is that the
method is time consuming (as encoding and decoding
are done iteratively). Very recently, a group
implemented a compression network by using GANs in
which they achieved visually more pleasing pictures at
high compression rates [4]. However, their
reconstructed images are different than the original
ones in the sense that they are commonly perceived as
a different person or object.
Theis et al. proposed compressive autoencoders which
uses a technique of entropy coding involving assigning
bit representation to values in images based on how
frequent a value appear in an image [5]. Quantization
(rounding to the nearest integer) step before encoding
makes the derivative of rounding function undefined,

mailto:kubra@bu.edu
mailto:sivark@bu.edu
mailto:mtezcan@bu.edu

Deep Learning Spring 2017, Project Report

Figure 2. Predictive coding for lossless image compression.
Green pixels shows the ones that we already know, and the
red box is prediction region. Our aim is to predict the value of

x using the pixels in the red box

Figure 3. Layers of MLP. We used ReLU functions after

every layer.

which is addressed by a smooth approximation only in
the backward pass. Convolutional autoencoders are
used for the implementation with performance metrics
peak signal to noise ratio (pSNR) and structural
similarity index metric (SSIM).
We applied several deep learning methods on the
image compression problem. For the lossless image
compression we used predictive coding via multilayer
perceptron (MLP) and for the lossy compression we
used autoencoders and GANs. Our results are better
than JPEG and very close to JPEG-2000.

3.Lossless Image Compression
Lossless image compression is important for the areas
which require precise imaging such as medicine and
astronomy. In this project, we investigated MLP
networks to apply predictive coding.

3.1. Predictive Coding with MLP
Most of the existing lossless image compression
algorithms like JPEG-LS are based on predictive
coding (PC). PC tries to estimate the new pixel value in
the image assuming that some neighboring pixels are
known. In this project we are reading the image in
raster scan (first row, second row ...).

Figure 4. Illustration for block based methods

Figure 5. Autoencoder illustration

So we can assume that green colored pixels in Figure
2 are known and we are estimating the value of ‘x’.
After the estimation step, we need to store the
estimation error in that pixel for guaranteeing lossless
compression. As a result, PC codes the whole image
pixel by pixel and we only need to store some initial
pixel values to start algorithm and the error image.
Error image will have the same dimensions as the real
image, however it will have a lower entropy in terms of
information theory. So, using variable length coding
(VLC) methods we can decrease the size of the error
image. For VLC, we used Huffman coding.
MLP based networks have been used for PC [2], but
after the publication of that paper, different extensions
are proven be to successful in MLP networks (e.g.
rectified linear units (ReLU), deeper networks). So, we
tried to implement a MLP network for PC using
state-of-the-art techniques. Figure 3 shows our final
network. After every layer we used ReLUs to introduce
nonlinearity. Note that, this is a regression network. At
the end, we are quantizing the prediction to the nearest
integer value. With this algorithm, we are creating
image specific weights but since our layer size are
small, we can easily store the network weights without
creating a significant increase in the file size.

Deep Learning Spring 2017, Project Report

Figure 6. Best performed convolutional autoencoder. Pooling layers represent max pooling operations and unpooling layers

represents bilinear interpolation.Here we quantized the encoded image using 6 bits instead of 8 to balance the increase in the
images color dimension from 3 to 4

Figure 7. Recurrent CNN-AE for introducing a trade-off

between image quality and compression ratio

Figure 8. Fine-Tuning approach used for images specific
compression

4.Lossy Image Compression
Human eye is not capable of sensing the small
differences in pixel values, so people introduced
several image compression algorithms which try to
compress the images further with minimal information
loss. Since human eye is less sensitive to local
information in images, most state-of-the-art
compression algorithms use block based methods. A
simple illustration about image patching can be found
in Figure 4. In this project, we also tried block based
compression (using 32x32 blocks) methods using
several autoencoder and GAN architecture for lossy
compression.

4.1. Compression using autoencoders
Autoencoders (AE) are the networks which tries to
represent the image using less information than the
original signal. This process can be achieved using a
dimensionality reduction, but we want to make sure
that we can recover the original signals back from the
reduced dimension with a small error. Thus, AE
includes two networks; one is for encoding and the

other is for decoding. The encoded signal is also called
latent representation of the original signal The general
scheme of the autoencoders can be found in Figure 5.
We started by investigating MLP based autoencoders
for the lossy compression by using the vectorized
images as the inputs of MLP based autoencoders, but
could not get any good results. This was mainly
because of the missing spatial information in the vector
representation of images.
Then, we tried fully convolutional autoencoders
(CNN-AE). Here, the main aim is to decrease the
dimensions of the image using max pooling operations.
The tricky part is the decoder network. We need to use
deconvolution operator for that part, but convolution
operator is not injective so the inverse operator does
not exist. However, Long et al. introduced an
approximation for deconvolutional neural networks [6].
We followed their idea and used interpolation function
followed by convolution operator for deconvolution.
Figure 6 shows
the general layout of our convolutional autoencoder
with the best parameters according our experiments.

Deep Learning Spring 2017, Project Report

For the autoencoder architectures, we used CNN-AE
which defined above as the baseline method and tried
two more improvements. First one is based on a very
simple idea mentioned in [7] which is adding a
recurrence relation to the network. Since our aim is
lossy compression we are introducing some error in
the output. For decreasing this error, we tried to use a
recurrent convolutional autoencoder (CNN-RNN-AE)
which treads the error after each step as the new
image and applies CNN-AE again to compress the
error. This idea is illustrated in Figure 7. This approach
introduces a trade-off between image quality and the
compression ratio.
We trained all of networks on a database consisting of
32x32 images and used block based compression in
the test images. We realized that our problem has a
difference from the classical machine learning
problems which aims to find the unknown output given
some input. Here both the input and output is the same
image which is known from the beginning. So, we may
be able to use some image specific information while
compressing it. One simple idea is to fine tune the
whole network using the patches of the current image.
However that will give image specific network weights
which we have to store with the image. Since deep
neural networks include too many weights, this
approach does not seem feasible. Instead, we decided
to use a very narrow decoder design and fine tune only
the decoder for the given image. This way, we can still
use the image specific information without increasing
the file size too much. This idea is illustrated in Figure
8.

4.2. Compression using GAN:

Figure 9. Generator of GANs being using as a decoder

Having considered compressed image as a different
representation of the original image in the latent space,
we came up with another question. How can we better
construct the latent representations to capture more

valuable information? In our case, this problem
corresponds to designing a better loss function to map
and inverse map the images. GANs [8] are appealing
for this task since they are known to produce realistic
looking images. However, at the same time, we need
to keep the sufficient information in order not to end up
with a realistic but a different image.
The generator part of the GANs can serve as a
decoder for the compression. Therefore, we first picked
our latent representations as the downsampled version
of the image. We combined the mean squared error
together with the adversarial loss to do reconstruction.
The formulation of the loss function chosen for the first
GAN compression network is as follows:

 (x , x) L (x, x) λ L (x, x , w, θ)L total ′ = λ 1 error ′ + 2 adversarial ′

where and are the weights of the discriminator w θ
and generator respectively. We picked Wasserstein
loss (WGAN loss) function as our adversarial loss [9].
The classical GAN loss suffers from instability since it
minimizes Jensen-Shannon distance which does not
give a continuous loss function when the probability
densities are in low dimensional manifold, which is our
case. Wasserstein loss gives a more stable and
converging error function which makes the
interpretation easier, and have a potential to provide
better results. In terms of the application, we removed
sigmoid layer, eliminated the logarithm from the loss
function, and clipped the weights. For more detail, the
reader is encouraged to read [9] . The first term for the
loss function is chosen as loss to achieve similarity L2
between the original and reconstructed images. For a
comparison, we also tried Goodfellow’s suggested
GAN loss as the first term [10].

The second approach is to replace the downsampled
images with an encoder output to get the compressed
representation. Adding an encoder - decoder scheme
gives the system the flexibility to decide on its own
latent representations. The training can be done
simultaneously or successively between the auto-
encoder and the GAN structure. We implemented the
simultaneous training. We evaluated the network with
classical GAN or WGAN loss as the first terms and L1
or L2 norm as the second terms. We validated the
network to find a good weighted balance between
these two terms.

Deep Learning Spring 2017, Project Report

Figure 10. Compression achieved using combination of both

auto encoder and GAN

Figure 11. Decoder network for CNN-AE-FT. Encoder part is

same with CNN-AE

5. Dataset and Metric
Since we developed an image specific algorithm for
lossless compression, we used three test images for
both training and testing.Those images can be found in
our Github repository.For the comparison metric of
lossless compression, we used bits per pixel (bpp).
For all training phase s of lossy compression we used
CIFAR dataset which consists of 50,000 32x32 RGB
images [11]. We chose this dataset for the following
three reasons: (i) it has many samples, (ii) since it
consist of small images, it does not require days to
train a network on CIFAR, and (iii) it is reasonable use
patch based compression on high resolution (HR)
images to protect local relationships in the pixel values.
We also used some HR images to test our methods
real performances. For the HR images we trained our
algorithms on CIFAR dataset and applied the resulting
weights to HR image patches.
We used two different metrics for comparisons. The
first one is peak signal to noise ratio (pSNR) which can
be formulated as

Where,

I is the input image and I’ is the reconstructed image
after applying encoder and decoder. Note that, we
want bigger pSNR values to show that our algorithm
performs better. However Wang et al. showed that
pSNR is not a good comparison metric for images
since this not take HVS into account [12]. They
proposed a new metric called structural similarity index
(SSIM). It can be formulated as

Where μ​X is the mean value of X, σ​X is the standard
deviation of X, σ​XY is the covariance of X and Y, L is
the dynamic range of pixel values (255 for 8 bit
unsigned integers), k​1​=0.01, and k​2​=0.03 by default.
SSIM is calculated on small image windows and then
averaged over all image. It results with a decimal value
between -1 and 1. SSIM=1 means the images are
exactly the same, so we want it to be as close as
possible to 1.

6. Experiments

6.1 MLP
For the lossless compression we used the model
shown in Figure 3 and implemented Huffman coding to
code the error images. One of the main parameters in
predictive coding is the size of the prediction block.
When we increase it too much the pixels became
uncorrelated with the next pixel and for small box sizes
it will become harder to estimate the new pixel value
and use a deep network. After some tests we decided
to use 60 pixels as the prediction size. For the loss
function, we used a simple MSE loss.

6.2 Autoencoders:
Our successful autoencoders are all fully convolutional
models. For consistency and easy comparison with
JPEG, we always used 16:1 compression ratio in our
experiments. The most important part about the
autoencoders is that we cannot use too many number
of filters in the last layer before the latent space since
we will store this representation as the compressed
image. This makes it hard to develop symmetric
autoencoders so we used asymmetric ones. Since our
input images are 32x32, very deep networks are not
performing so well. After doing some experiments, we

Deep Learning Spring 2017, Project Report

found the network depicted in Figure 6 to be the best
one for CNN-AE and CNN-RNN-AE. In CNN-RNN-AE
we used 3 recursive steps. We can use the same
architecture for also CNN-AE-FT, but it has ~1300
weights of 32 bit floating numbers in the decoder and it
will be inefficient to store them with the compressed
image. Thus we decided to use a shallower decoder
for fine tuning approach. The network used for fine
tuning is shown in Figure 11. In all AE variations we
used Adam optimizer, with a learning rate of 10​-5 and
MSE ass the loss function.

6.3 GANs
The first GAN network has two parts: a decoder and a
discriminator network. We inspired the decoder
network from Resnet [13], however we chose to make
it shallower since our images have sizes 32x32 and we
desired a shorter training time due to the time
constraints and to control the parameters more easily.
The decoder (generator) consists of residual,
upsampling, batch normalization layer, relu, conv2d
and conv2d transpose blocks. Fig 9 shows the exact
order of the layers and the details of the parameters of
the layers. Convolutional layers in the decoder part
have paddings and with stride size 1, so that they do
not change the image size, we achieve the original size
by upsampling twice. Discriminator only consists of
convolutional layers Figure 9. We used xavier
initialization [14] for convolutional layers to decrease
the saturation of the activation units.

For Wasserstein loss function we took learning rate as

, used RMSProp, and clipped weights between.10 2 −5
[A-0.01, 0.01] interval as suggested in the paper [9].

and give the best SSIM results. λ 1 = 1 10λ 2 =
When we increase , MSE error decreased as λ 2
expected since that term directly minimizes MSE. For
DCGAN loss, we used as learning rate and .10 2 −4
ADAM optimizer with beta = 0.5.

The second GAN network consists of an auto-encoder
and a discriminator. We used the same learning rate
and coefficients for all of the loss functions. Encoder
and decoder are convolutional networks with upscaling
and max pooling layers to control the size of the image.
The details of the layers and parameters are given in
Figure 10.

7. Results and Comparison:
Even if there are variety of different compression
techniques which claim they are better than JPEG,
most of them does not give implementation details and

also JPEG is still to most widely used compression
algorithm for both lossy and lossless compression.
Thus, in this paper, we will compare our results with
JPEG and JPEG-2000.
Table 1 shows the comparison of bpp between our
network, JPEG and JPEG-2000. So our network
achieves far better results than JPEG and it is very
close to JPEG-2000. Also note that this MLP network
can run on real time on the current personal computers
and mobile phones.

Table 1. Comparison of average bpp rates for different
lossless compression algorithms on the test images

Algorithm Bits per pixel

JPEG 5.2

JPEG-2000 4.3

MLP 4.5

For the lossy compression, we compared our results
on both CIFAR test data and HR test images using
patch based compression. For our best performing
CNN-AE and GAN networks, we showed the results in
Tables 2 and 3. All results are recorded for 16:1
compression ratio. We want to inform the reader that
this comparisons are not so fair since we did not use
any entropy coding in our algorithms.
On the CIFAR test data, all of our algorithms except
GAN-AE with L1+DC loss beat JPEG and our best
performing network is GAN-AE with L2+Wloss. One
can observe that WGAN performs better than DCGAN
and also adding L2 loss boosted the performance. We
could not achieve a good performance with L1 loss.
Moreover, we observed that as we give more weight to
the similarity loss (L2), the pictures started to resemble
more but images become more blurry. As we increase
the weight of the adversarial loss, the outputs became
more sharp and pleasing, but we encountered some
problems related to the color. The network required
many iterations to get the same color with the original
image, and sometimes it degraded. But after finding
good parameters for the networks, these problems are
minimized and we achieved a sharper and a good
reconstructed image. CNN-AE and CNN-RNN-AE also
achieved very good performances.
In the CIFAR data, none of our algorithms are in a
comparable level with JPEG-2000. However, when
using patch based comparison algorithms on HR
image set, we can get comparable results with

Deep Learning Spring 2017, Project Report

JPEG-2000. Results on HR images can be found in
Table 3. Again, GAN-AE showed a great success.
Here we only reported the best performed GAN-AE
network which uses L2 loss and wasserstein metric.
According SSIM, CNN-AE-FT seems to be very
successful with an index very close JPEG-2000 and
beat GAN-AE network. It shows that image specific
compression using fine tuning shows a great promise.
Also, note the performance increase in JPEG from
CIFAR images to HR images. It seems that JPEG is
much more powerful for the HR images and it is more
meaningful to make JPEG comparisons on HR
images.

Table 2. Results of various architecture on CIFAR dataset

CIFAR

Method pSNR

JPEG-2000 43.6

GAN-AE(L2, W) 36.98

GAN-AE(L2, DC) 31.54

CNN-RNN-AE 31.4

GAN WGAN 30.96

CNN-AE 30.6

GAN - DC 30.45

GAN-AE(L1, W) 30.04

JPEG 28.24

GAN-AE(L1,DC) 28.23

8. Future Work:
We have presented different networks to compress low
and high resolution images. We have our results
based on the network structures and parameters we
tried. Although most of our results are promising, they
raises many directions and modifications that can be
applied. In our project, we focused on the lossy
compression problem and tried very simple
architecture for the lossless compression. We trained
MLP network using MSE loss. Using an entropy loss
instead of MLP loss can leverage the performance, but
this is not a simple task since calculating the entropy
requires the entropy of the error image. For estimating

the entropy we can use density estimation methods
such as Parzen windowing as defined in [15].

Table 3. Results of various architecture on HR dataset

HR Images

Method pSNR SSIM

JPEG-2000 36.1 0.993

CNN-AE-FT 33.9 0.99

GAN-AE(best) 32.53 0.987

JPEG 33.2 0.986

CNN-RNN-AE 30.2 0.972

CNN-AE 28.9 0.968

We used two elements as the loss function for GAN
networks, the first one is for the similarity between the
original and the reconstructed image and the other one
is the adversarial loss to make images more sharp and
realistic. We can explore other metrics instead of the
Euclidean distance as a similarity measurement. In
addition, a third component can be added to minimize
the Euclidean error not in the original space, but in
some feature space. The feature space can be
constructed by a known network such as VGG [16] or
Alexnet [17]. This method is used in superresolution
tasks to get superior images [18], it can be easily
applied to our approach. In addition, entropy of the
compressed representations can be added to the loss
function to decrease the amount of the redundant
information we stored. We can use a smooth
approximation of the entropy function since the
derivative is zero except at the integers. This
approximation will allow us to backpropagate the loss
[19].
Another improvement can be made by taking the
advantage of the knowledge of the original images. For
instance, high frequency elements make the image
sharp, they can be fed to the system as a condition or
directly to decrease the loss of this information.
Alternative sources can be used to keep more
information, such as the representation in a feature
space. Moreover, we can condition on the classes and
compress based on the class information which may
lead to better results.
Fine tuning approach can be used in video
compression since we will be storing weights specific

Deep Learning Spring 2017, Project Report

to a single image. In a video, images can share the
decoder weights for the consecutive collection of the
frames, which makes the storage of the decoder
weights negligible. We can also apply fine-tuning for
GANs.
In order to avoid the square patterns at the output
image for high-resolution inputs; we can either use o
overlapping patches to compensate the error on the
boundaries, or we can do some image processing to
eliminate them. Another option is to make the network
bigger and deeper and compress the whole HR image
in a lump rather than dividing it into patches.
Lastly, we used deterministic autoencoder in all of our
networks to encode and decode the images. Although
we believe that deterministic autoencoders are more
appropriate for our scenario, there are some works on
variational autoencoders due to their generative power
[20, 21]. They can be explored to integrate our
framework.

9. Detailed Roles
Task File Names Who

Implemented and test MLP for
lossless compression

MLP_lossless/* Ozan

Implemented entropy coding
for comparisons

MLP_lossless/* Ozan

Implemented and test
autoencoders

Autoencoders/* Ozan-Siva

Implemented and test GANs GAN/*
GAN-AE/*

Kubra

Implemented SSIM for
comparisons

SSIM.ipynb Siva

Prepared report and
presentation

Report and
Presentation

all

10. Code repository
https://github.com/scelesticsiva/Neural-Networks-for-Image-
Compression

11.References

1) Ranganathan, Parthasarathy. "The data explosion."
(2011): 39-48.

2) Jiang, J. "Image compression with neural
networks–a survey." Signal Processing: Image
Communication 14.9 (1999): 737-760.

3) Toderici, George, et al. "Full Resolution Image
Compression with Recurrent Neural Networks."
arXiv preprint arXiv:1608.05148 (2016).

4) Santurkar, Shibani, David Budden, and Nir Shavit.
"Generative compression." ​arXiv preprint
arXiv:1703.01467​ (2017).

5) Lucas Theis, et al. “Lossy image compression wit
compressive autoencoders” (2017) submitted to
ICLR.

6) Shirsat, T. G., and V. K. Bairagi. "Lossless medical
image compression by integer wavelet and
predictive coding." ​ISRN Biomedical Engineering
2013 (2013).

7) Toderici, George, et al. "Full Resolution Image
Compression with Recurrent Neural Networks."
arXiv preprint arXiv:1608.05148​ (2016).

8) Goodfellow, Ian, et al. "Generative adversarial nets."
Advances in neural information processing systems​.
2014.​http://ieeexplore.ieee.org/document/1284395/
?arnumber=1284395&tag=1

9) Arjovsky, Martin, Soumith Chintala, and Léon
Bottou. "Wasserstein gan." ​arXiv preprint
arXiv:1701.07875​ (2017).

10) Goodfellow, Ian. "NIPS 2016 Tutorial: Generative
Adversarial Networks." ​arXiv preprint
arXiv:1701.00160​ (2016).

11) Krizhevsky, Alex, and Geoffrey Hinton. "Learning
multiple layers of features from tiny images." (2009).

12) Wang, Zhou, et al. "Image quality assessment: from
error visibility to structural similarity." ​IEEE
transactions on image processing 13.4 (2004):
600-612.

13) He, Kaiming, et al. "Deep residual learning for
image recognition." ​Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition​. 2016.

14) Glorot, Xavier, and Yoshua Bengio. "Understanding
the difficulty of training deep feedforward neural
networks." ​Aistats​. Vol. 9. 2010.

15) Erdogmus, Deniz, and Jose C. Principe. "Entropy
minimization algorithm for multilayer perceptrons."
Neural Networks, 2001. Proceedings. IJCNN'01.
International Joint Conference on​. Vol. 4. IEEE,
2001.

16) Simonyan, Karen, and Andrew Zisserman. "Very
deep convolutional networks for large-scale image
recognition." ​arXiv preprint arXiv:1409.1556​ (2014).

17) Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E.
Hinton. "Imagenet classification with deep
convolutional neural networks." ​Advances in neural
information processing systems​. 2012.

18) Ledig, Christian, et al. "Photo-realistic single image
super-resolution using a generative adversarial
network." ​arXiv preprint arXiv:1609.04802​ (2016).

19) Theis, Lucas, et al. "Lossy image compression with
compressive autoencoders." ​arXiv preprint
arXiv:1703.00395​ (2017).

20) Santurkar, Shibani, David Budden, and Nir Shavit.
"Generative compression." ​arXiv preprint
arXiv:1703.01467​ (2017).

https://github.com/scelesticsiva/Neural-Networks-for-Image-Compression
https://github.com/scelesticsiva/Neural-Networks-for-Image-Compression
http://ieeexplore.ieee.org/document/1284395/?arnumber=1284395&tag=1
http://ieeexplore.ieee.org/document/1284395/?arnumber=1284395&tag=1

Deep Learning Spring 2017, Project Report

21) Gregor, Karol, et al. "Towards conceptual compression." ​Advances In Neural Information
Processing Systems​. 2016.

Deep Learning Spring 2017, Project Report

12.Appendix

Figure 12. (left) our best performed algorithm on CIFAR (GAN_AE with WGAN and L2 loss), (right) original CIFAR images

Figure 13. Original image

Deep Learning Spring 2017, Project Report

Figure 14. Image compressed with JPEG

Figure 15. Image compressed by CNN-AE

Deep Learning Spring 2017, Project Report

Figure 16. Image compressed by RNN-CNN-AE

Figure 17. Image compressed by CNN-AE-FT

Deep Learning Spring 2017, Project Report

Figure 18. Image compressed by WGAN L2

Figure 19. Image compressed by DCGAN L2

