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Figure 1. (left) our best performing algorithm (CNN-AE-FT), (right) original image 

 
1. Task 
Image compression has an important role in data        
transfer and storage, especially due to the data        
explosion that is increasing significantly faster than       
Moore’s Law.[1] It is a challenging task since there are          
highly complex unknown correlations between the      
pixels, as a result, it is hard to find and recover them.            
We want to find a well-compressed representation for        
images and, design and test networks that are able to          
recover it successfully in a lossless or lossy way. 
 
2. Related Work 
Several neural networks and deep learning methods       
have been utilized for the purpose of image comp-         
ression. [2] summarizes most of the neural network        
approaches for image compression that are proposed       
before 1999. However, in those years there were no         
efficient deep learning algorithms. Toderici et al.       
proposed one of the most successful deep learning        
approaches for this aim [3]. They used a recurrent         
neural network (RNN) architecture and achieved      
slightly better performance than JPEG. They      
addressed the problem of JPEG compression for small        
images where the amount of redundant information is        

small. This network follows the classical three stages        
process of compression: encoding, quantization and      
decoding. Encoding and decoding are done iteratively       
using two different architecture of RNNs, Long Short        
Term Memory (LSTM) and convolutional/     
deconvolutional LSTMs. The advantage of this method       
is that the compression ratio can be increased        
progressively while the disadvantage is that the       
method is time consuming (as encoding and decoding        
are done iteratively). Very recently, a group       
implemented a compression network by using GANs in        
which they achieved visually more pleasing pictures at        
high compression rates [4]. However, their      
reconstructed images are different than the original       
ones in the sense that they are commonly perceived as          
a different person or object. 
Theis et al. proposed compressive autoencoders which       
uses a technique of entropy coding involving assigning        
bit representation to values in images based on how         
frequent a value appear in an image [5]. Quantization         
(rounding to the nearest integer) step before encoding        
makes the derivative of rounding function undefined,  
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Figure 2.  Predictive coding for lossless image compression. 
Green pixels shows the ones that we already know, and the 
red box is prediction region. Our aim is to predict the value of 

x using the pixels in the red box 
 

 
Figure 3. Layers of MLP. We used ReLU functions after 

every layer. 
 

which is addressed by a smooth approximation only in         
the backward pass. Convolutional autoencoders are      
used for the implementation with performance metrics       
peak signal to noise ratio (pSNR) and structural        
similarity index metric (SSIM). 
We applied several deep learning methods on the        
image compression problem. For the lossless image       
compression we used predictive coding via multilayer       
perceptron (MLP) and for the lossy compression we        
used autoencoders and GANs. Our results are better        
than JPEG and very close to JPEG-2000.  
 
3.Lossless Image Compression 
Lossless image compression is important for the areas        
which require precise imaging such as medicine and        
astronomy. In this project, we investigated MLP       
networks to apply predictive coding. 
 
3.1.  Predictive Coding with MLP 
Most of the existing lossless image compression       
algorithms like JPEG-LS are based on predictive       
coding (PC). PC tries to estimate the new pixel value in           
the image assuming that some neighboring pixels are        
known. In this project we are reading the image in          
raster scan (first row, second row ...). 

 

 

 
Figure 4. Illustration for block based methods 

 

 
Figure 5.  Autoencoder illustration 

 
So we can assume that green colored pixels in Figure          
2 are known and we are estimating the value of ‘x’.           
After the estimation step, we need to store the         
estimation error in that pixel for guaranteeing lossless        
compression. As a result, PC codes the whole image         
pixel by pixel and we only need to store some initial           
pixel values to start algorithm and the error image.         
Error image will have the same dimensions as the real          
image, however it will have a lower entropy in terms of           
information theory. So, using variable length coding       
(VLC) methods we can decrease the size of the error          
image. For VLC, we used Huffman coding. 
MLP based networks have been used for PC [2], but          
after the publication of that paper, different extensions        
are proven be to successful in MLP networks (e.g.         
rectified linear units (ReLU), deeper networks). So, we        
tried to implement a MLP network for PC using         
state-of-the-art techniques. Figure 3 shows our final       
network. After every layer we used ReLUs to introduce         
nonlinearity. Note that, this is a regression network. At         
the end, we are quantizing the prediction to the nearest          
integer value. With this algorithm, we are creating        
image specific weights but since our layer size are         
small, we can easily store the network weights without         
creating a significant increase in the file size. 
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Figure 6. Best performed convolutional autoencoder. Pooling layers represent max pooling operations and unpooling layers 

represents bilinear interpolation.Here we quantized the encoded image using 6 bits instead of 8 to balance the increase in the 
images color dimension from 3 to 4 

  

 
Figure 7. Recurrent CNN-AE for introducing a trade-off 

between image quality and compression ratio 
 

 
 

Figure 8. Fine-Tuning approach used for images specific 
compression 

 
4.Lossy Image Compression 
Human eye is not capable of sensing the small         
differences in pixel values, so people introduced       
several image compression algorithms which try to       
compress the images further with minimal information       
loss. Since human eye is less sensitive to local         
information in images, most state-of-the-art     
compression algorithms use block based methods. A       
simple illustration about image patching can be found        
in Figure 4. In this project, we also tried block based           
compression (using 32x32 blocks) methods using      
several autoencoder and GAN architecture for lossy       
compression. 
 
4.1. Compression using autoencoders 
Autoencoders (AE) are the networks which tries to        
represent the image using less information than the        
original signal. This process can be achieved using a         
dimensionality reduction, but we want to make sure        
that we can recover the original signals back from the          
reduced dimension with a small error. Thus, AE        
includes two networks; one is for encoding and the  

other is for decoding. The encoded signal is also called          
latent representation of the original signal The general        
scheme of the autoencoders can be found in Figure 5.          
We started by investigating MLP based autoencoders       
for the lossy compression by using the vectorized        
images as the inputs of MLP based autoencoders, but         
could not get any good results. This was mainly         
because of the missing spatial information in the vector         
representation of images.  
Then, we tried fully convolutional autoencoders      
(CNN-AE). Here, the main aim is to decrease the         
dimensions of the image using max pooling operations.        
The tricky part is the decoder network. We need to use           
deconvolution operator for that part, but convolution       
operator is not injective so the inverse operator does         
not exist. However, Long et al. introduced an        
approximation for deconvolutional neural networks [6].      
We followed their idea and used interpolation function        
followed by convolution operator for deconvolution.      
Figure 6 shows  
the general layout of our convolutional autoencoder       
with the best parameters according our experiments. 
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For the autoencoder architectures, we used CNN-AE       
which defined above as the baseline method and tried         
two more improvements. First one is based on a very          
simple idea mentioned in [7] which is adding a         
recurrence relation to the network. Since our aim is         
lossy compression we are introducing some error in        
the output. For decreasing this error, we tried to use a           
recurrent convolutional autoencoder (CNN-RNN-AE)    
which treads the error after each step as the new          
image and applies CNN-AE again to compress the        
error. This idea is illustrated in Figure 7. This approach          
introduces a trade-off between image quality and the        
compression ratio. 
We trained all of networks on a database consisting of          
32x32 images and used block based compression in        
the test images. We realized that our problem has a          
difference from the classical machine learning      
problems which aims to find the unknown output given         
some input. Here both the input and output is the same           
image which is known from the beginning. So, we may          
be able to use some image specific information while         
compressing it. One simple idea is to fine tune the          
whole network using the patches of the current image.         
However that will give image specific network weights        
which we have to store with the image. Since deep          
neural networks include too many weights, this       
approach does not seem feasible. Instead, we decided        
to use a very narrow decoder design and fine tune only           
the decoder for the given image. This way, we can still           
use the image specific information without increasing       
the file size too much. This idea is illustrated in Figure           
8. 
 
4.2. Compression using GAN:  

 
Figure 9. Generator of GANs being using as a decoder 

 
Having considered compressed image as a different       
representation of the original image in the latent space,         
we came up with another question. How can we better          
construct the latent representations to capture more       

valuable information? In our case, this problem       
corresponds to designing a better loss function to map         
and inverse map the images. GANs [8] are appealing         
for this task since they are known to produce realistic          
looking images. However, at the same time, we need         
to keep the sufficient information in order not to end up           
with a realistic but a different image.  
The generator part of the GANs can serve as a          
decoder for the compression. Therefore, we first picked        
our latent representations as the downsampled version       
of the image. We combined the mean squared error         
together with the adversarial loss to do reconstruction.        
The formulation of the loss function chosen for the first          
GAN compression network is as follows: 
 

 (x , x )  L  (x, x )  λ L (x, x , w, θ)L total   ′ = λ 1 error  ′ +  2 adversarial  ′     
 
 
where and are the weights of the discriminator w    θ       
and generator respectively. We picked Wasserstein      
loss (WGAN loss) function as our adversarial loss [9].         
The classical GAN loss suffers from instability since it         
minimizes Jensen-Shannon distance which does not      
give a continuous loss function when the probability        
densities are in low dimensional manifold, which is our         
case. Wasserstein loss gives a more stable and        
converging error function which makes the      
interpretation easier, and have a potential to provide        
better results. In terms of the application, we removed         
sigmoid layer, eliminated the logarithm from the loss        
function, and clipped the weights. For more detail, the         
reader is encouraged to read [9] . The first term for the            
loss function is chosen as loss to achieve similarity     L2      
between the original and reconstructed images. For a        
comparison, we also tried Goodfellow’s suggested      
GAN loss as the first term [10]. 
 
The second approach is to replace the downsampled        
images with an encoder output to get the compressed         
representation. Adding an encoder - decoder scheme       
gives the system the flexibility to decide on its own          
latent representations. The training can be done       
simultaneously or successively between the auto-      
encoder and the GAN structure. We implemented the        
simultaneous training. We evaluated the network with       
classical GAN or WGAN loss as the first terms and L1           
or L2 norm as the second terms. We validated the          
network to find a good weighted balance between        
these two terms.  
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Figure 10. Compression achieved using combination of both 

auto encoder and GAN 
 

 
Figure 11. Decoder network for CNN-AE-FT. Encoder part is 

same with CNN-AE 
 
5. Dataset and Metric 
Since we developed an image specific algorithm for        
lossless compression, we used three test images for        
both training and testing.Those images can be found in         
our Github repository.For the comparison metric of       
lossless compression, we used bits per pixel (bpp). 
For all training phase s of lossy compression we used          
CIFAR dataset which consists of 50,000 32x32 RGB        
images [11]. We chose this dataset for the following         
three reasons: (i) it has many samples, (ii) since it          
consist of small images, it does not require days to          
train a network on CIFAR, and (iii) it is reasonable use           
patch based compression on high resolution (HR)       
images to protect local relationships in the pixel values.         
We also used some HR images to test our methods          
real performances. For the HR images we trained our         
algorithms on CIFAR dataset and applied the resulting        
weights to HR image patches.  
We used two different metrics for comparisons. The        
first one is peak signal to noise ratio (pSNR) which can           
be formulated as 

 
Where, 

 
I is the input image and I’ is the reconstructed image           
after applying encoder and decoder. Note that, we        
want bigger pSNR values to show that our algorithm         
performs better. However Wang et al. showed that        
pSNR is not a good comparison metric for images         
since this not take HVS into account [12]. They         
proposed a new metric called structural similarity index        
(SSIM). It can be formulated as 

 
Where μ​X is the mean value of X, σ​X is the standard            
deviation of X, σ​XY is the covariance of X and Y, L is             
the dynamic range of pixel values (255 for 8 bit          
unsigned integers), k​1​=0.01, and k​2​=0.03 by default.       
SSIM is calculated on small image windows and then         
averaged over all image. It results with a decimal value          
between -1 and 1. SSIM=1 means the images are         
exactly the same, so we want it to be as close as            
possible to 1. 
 
6. Experiments 
 
6.1 MLP 
For the lossless compression we used the model        
shown in Figure 3 and implemented Huffman coding to         
code the error images. One of the main parameters in          
predictive coding is the size of the prediction block.         
When we increase it too much the pixels became         
uncorrelated with the next pixel and for small box sizes          
it will become harder to estimate the new pixel value          
and use a deep network. After some tests we decided          
to use 60 pixels as the prediction size. For the loss           
function, we used a simple MSE loss. 

 
6.2 Autoencoders:  
Our successful autoencoders are all fully convolutional       
models. For consistency and easy comparison with       
JPEG, we always used 16:1 compression ratio in our         
experiments. The most important part about the       
autoencoders is that we cannot use too many number         
of filters in the last layer before the latent space since           
we will store this representation as the compressed        
image. This makes it hard to develop symmetric        
autoencoders so we used asymmetric ones. Since our        
input images are 32x32, very deep networks are not         
performing so well. After doing some experiments, we        
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found the network depicted in Figure 6 to be the best           
one for CNN-AE and CNN-RNN-AE. In CNN-RNN-AE       
we used 3 recursive steps. We can use the same          
architecture for also CNN-AE-FT, but it has ~1300        
weights of 32 bit floating numbers in the decoder and it           
will be inefficient to store them with the compressed         
image. Thus we decided to use a shallower decoder         
for fine tuning approach. The network used for fine         
tuning is shown in Figure 11. In all AE variations we           
used Adam optimizer, with a learning rate of 10​-5 and          
MSE ass the loss function. 
 
6.3 GANs 
The first GAN network has two parts: a decoder and a           
discriminator network. We inspired the decoder      
network from Resnet [13], however we chose to make         
it shallower since our images have sizes 32x32 and we          
desired a shorter training time due to the time         
constraints and to control the parameters more easily.        
The decoder (generator) consists of residual,      
upsampling, batch normalization layer, relu, conv2d      
and conv2d transpose blocks. Fig 9 shows the exact         
order of the layers and the details of the parameters of           
the layers. Convolutional layers in the decoder part        
have paddings and with stride size 1, so that they do           
not change the image size, we achieve the original size          
by upsampling twice. Discriminator only consists of       
convolutional layers Figure 9. We used xavier       
initialization [14] for convolutional layers to decrease       
the saturation of the activation units.  
 
For Wasserstein loss function we took learning rate as         

, used RMSProp, and clipped weights between.10 2 −5        
[A-0.01, 0.01] interval as suggested in the paper [9].         

and give the best SSIM results. λ 1 = 1     10λ 2 =        
When we increase , MSE error decreased as    λ 2      
expected since that term directly minimizes MSE. For        
DCGAN loss, we used as learning rate and    .10 2 −4     
ADAM optimizer with beta = 0.5.  
 
The second GAN network consists of an auto-encoder        
and a discriminator. We used the same learning rate         
and coefficients for all of the loss functions. Encoder         
and decoder are convolutional networks with upscaling       
and max pooling layers to control the size of the image.           
The details of the layers and parameters are given in          
Figure 10. 
 
7. Results and Comparison: 
Even if there are variety of different compression        
techniques which claim they are better than JPEG,        
most of them does not give implementation details and         

also JPEG is still to most widely used compression         
algorithm for both lossy and lossless compression.       
Thus, in this paper, we will compare our results with          
JPEG and JPEG-2000. 
Table 1 shows the comparison of bpp between our         
network, JPEG and JPEG-2000. So our network       
achieves far better results than JPEG and it is very          
close to JPEG-2000. Also note that this MLP network         
can run on real time on the current personal computers          
and mobile phones. 
 

Table 1. Comparison of average bpp rates for different 
lossless compression algorithms on the test images 

Algorithm Bits per pixel 

JPEG 5.2 

JPEG-2000 4.3 

MLP 4.5 

 
For the lossy compression, we compared our results        
on both CIFAR test data and HR test images using          
patch based compression. For our best performing       
CNN-AE and GAN networks, we showed the results in         
Tables 2 and 3. All results are recorded for 16:1          
compression ratio. We want to inform the reader that         
this comparisons are not so fair since we did not use           
any entropy coding in our algorithms. 
On the CIFAR test data, all of our algorithms except          
GAN-AE with L1+DC loss beat JPEG and our best         
performing network is GAN-AE with L2+Wloss. One       
can observe that WGAN performs better than DCGAN        
and also adding L2 loss boosted the performance. We         
could not achieve a good performance with L1 loss.         
Moreover, we observed that as we give more weight to          
the similarity loss (L2), the pictures started to resemble         
more but images become more blurry. As we increase         
the weight of the adversarial loss, the outputs became         
more sharp and pleasing, but we encountered some        
problems related to the color. The network required        
many iterations to get the same color with the original          
image, and sometimes it degraded. But after finding        
good parameters for the networks, these problems are        
minimized and we achieved a sharper and a good         
reconstructed image. CNN-AE and CNN-RNN-AE also      
achieved very good performances.  
In the CIFAR data, none of our algorithms are in a           
comparable level with JPEG-2000. However, when      
using patch based comparison algorithms on HR       
image set, we can get comparable results with        
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JPEG-2000. Results on HR images can be found in         
Table 3. Again, GAN-AE showed a great success.        
Here we only reported the best performed GAN-AE        
network which uses L2 loss and wasserstein metric.        
According SSIM, CNN-AE-FT seems to be very       
successful with an index very close JPEG-2000 and        
beat GAN-AE network. It shows that image specific        
compression using fine tuning shows a great promise.        
Also, note the performance increase in JPEG from        
CIFAR images to HR images. It seems that JPEG is          
much more powerful for the HR images and it is more           
meaningful to make JPEG comparisons on HR       
images. 
 

Table 2. Results of various architecture on CIFAR dataset 

CIFAR 

Method pSNR 

JPEG-2000 43.6 

GAN-AE(L2, W) 36.98 

GAN-AE(L2, DC) 31.54 

CNN-RNN-AE 31.4 

GAN WGAN 30.96 

CNN-AE 30.6 

GAN - DC 30.45 

GAN-AE(L1, W) 30.04 

JPEG 28.24 

GAN-AE(L1,DC) 28.23 

 
8. Future Work: 
We have presented different networks to compress low        
and high resolution images. We have our results        
based on the network structures and parameters we        
tried. Although most of our results are promising, they         
raises many directions and modifications that can be        
applied. In our project, we focused on the lossy         
compression problem and tried very simple      
architecture for the lossless compression. We trained       
MLP network using MSE loss. Using an entropy loss         
instead of MLP loss can leverage the performance, but         
this is not a simple task since calculating the entropy          
requires the entropy of the error image. For estimating         

the entropy we can use density estimation methods        
such as Parzen windowing as defined in [15]. 

 
Table 3. Results of various architecture on HR dataset 

HR Images 

Method pSNR SSIM 

JPEG-2000 36.1 0.993 

CNN-AE-FT 33.9 0.99 

GAN-AE(best) 32.53 0.987 

JPEG 33.2 0.986 

CNN-RNN-AE 30.2 0.972 

CNN-AE 28.9 0.968 

 
We used two elements as the loss function for GAN          
networks, the first one is for the similarity between the          
original and the reconstructed image and the other one         
is the adversarial loss to make images more sharp and          
realistic. We can explore other metrics instead of the         
Euclidean distance as a similarity measurement. In       
addition, a third component can be added to minimize         
the Euclidean error not in the original space, but in          
some feature space. The feature space can be        
constructed by a known network such as VGG [16] or          
Alexnet [17]. This method is used in superresolution        
tasks to get superior images [18], it can be easily          
applied to our approach. In addition, entropy of the         
compressed representations can be added to the loss        
function to decrease the amount of the redundant        
information we stored. We can use a smooth        
approximation of the entropy function since the       
derivative is zero except at the integers. This        
approximation will allow us to backpropagate the loss        
[19].  
Another improvement can be made by taking the        
advantage of the knowledge of the original images. For         
instance, high frequency elements make the image       
sharp, they can be fed to the system as a condition or            
directly to decrease the loss of this information.        
Alternative sources can be used to keep more        
information, such as the representation in a feature        
space. Moreover, we can condition on the classes and         
compress based on the class information which may        
lead to better results.  
Fine tuning approach can be used in video        
compression since we will be storing weights specific        
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to a single image. In a video, images can share the           
decoder weights for the consecutive collection of the        
frames, which makes the storage of the decoder        
weights negligible. We can also apply fine-tuning for        
GANs.  
In order to avoid the square patterns at the output          
image for high-resolution inputs; we can either use o 
overlapping patches to compensate the error on the        
boundaries, or we can do some image processing to         
eliminate them. Another option is to make the network         
bigger and deeper and compress the whole HR image         
in a lump rather than dividing it into patches.  
Lastly, we used deterministic autoencoder in all of our         
networks to encode and decode the images. Although        
we believe that deterministic autoencoders are more       
appropriate for our scenario, there are some works on         
variational autoencoders due to their generative power       
[20, 21]. They can be explored to integrate our         
framework.  
 
9. Detailed Roles 
Task File Names Who 

Implemented and test MLP for 
lossless compression 

MLP_lossless/* Ozan 

Implemented entropy coding 
for comparisons 

MLP_lossless/* Ozan 

Implemented and test  
autoencoders 

Autoencoders/* Ozan-Siva 

Implemented and test GANs GAN/* 
GAN-AE/* 

Kubra 

Implemented SSIM for 
comparisons 

SSIM.ipynb Siva 

Prepared report and 
presentation 

Report and 
Presentation 

all 

 
10. Code repository 
https://github.com/scelesticsiva/Neural-Networks-for-Image-
Compression 
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12.Appendix 

 
 

Figure 12. (left) our best performed algorithm on CIFAR (GAN_AE with WGAN and L2 loss), (right) original CIFAR images 
 
 

 
Figure 13. Original image 
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Figure 14. Image compressed with JPEG 

 
 
 

 
Figure 15. Image compressed by CNN-AE 
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Figure 16. Image compressed by RNN-CNN-AE 

 
 
 

 
Figure 17. Image compressed by CNN-AE-FT 
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Figure 18. Image compressed by WGAN L2 

 
 
 

 
Figure 19. Image compressed by DCGAN L2 

 
 


