
Neural Networks and Optimizations

Siva G Perumal∗

Sivaramakrishnan Sankarapandian∗

May 12, 2017

∗equal contributions

1

Abstract

Neural networks are growing in stature day by day.Neural networks have been hugely successful
in approximating fairly complex models.This project aims to implement a three layer network
in C to classify the digits in MNIST data. First the baseline serial code was implemented from
scratch. Then different optimization techniques such as loop unrolling, Intel intrinsics, OpenMP
and CUDA were implemented. The performance of the optimized versions are compared with
the serial baseline code and the results are presented.

2

Contents

1 Neural Networks 4
1.1 Introduction . 4
1.2 Neural network working . 5

2 Gradient Descent Algorithm 7
2.1 Training Neural Network . 7
2.2 Learning Rate . 7
2.3 Cross-validation . 7
2.4 Weights Initialization . 8

3 Serial Implementation of neural networks 8
3.1 Dataset . 8
3.2 Preprocessing in python . 8
3.3 Helper functions in C . 8
3.4 Main function in C . 9

4 Parallelization of the Serial Code 9
4.1 Loop Unrolling . 9
4.2 Intel Streaming SIMD Extensions(SSE) . 11
4.3 OpenMP . 11
4.4 CUDA implementation . 12

5 Summary 13

6 Appendix 14

3

1 Neural Networks

1.1 Introduction

Neural networks are a bunch of processing elements (PE) connected to the PEs in the next layer.The
most basic network is the multilayer perceptron which has the structure in figure 1:

Figure 1: A simple neural network
[1]

As indicated by the arrows in figure 1, the direction of flow of data is from left to right. There is
no feedback in these types of neural networks. Each circle is a Processing Element(PE) and each
arrow has a weight associated with it.

All the PEs function in the same way. In neural networks, the PEs are called neurons.The details
of each neuron is shown in figure 2. From the figure, the working of a neuron can be summarized

Figure 2: Neuron structure
[2]

as follows:

• The inputs x are multiplied by the weights w and summed.

• A bias is added to the sum.

• A function f(u), called the activation function is applied to the total sum.

There are many activation functions available, but in this project sigmoid activation(shown in
figure 3)is used. It is a non-linear activation function and gives output in between zero and one.

4

Mathematically, it is expressed as:

σ(x) =
1

1 + e−x

Figure 3: Sigmoid function

So far the structure of a neural network and the working of a neuron is explained. The next
section explains the working of the neural network as a whole.

1.2 Neural network working

A neural network has to be trained before it can be useful for making predictions.Training the
neural network involves two steps[3]:

• Forward pass

• Backpropagation

At the end of backpropagation we get the values by which the weights and the biases have to be
changed so as to reduce the error between the predicted and the desired outputs. If we assume a
two layer network with an input dimension of n and output dimension of m, for a mini-batch of size
d, the complexity would be O(mnd)
Here we explain the process for the three layer neural network (NN) in figure 1. The idea can be
easily extended to NNs with any number of layers.

Forward pass :
We start by defining a few terms:

• x = [x1, x2, x3] is the input vector.

• w21, w32 are first and the second weight matrices.

• b1, b2 are the biases for the hidden layer and the output layer.

• sigmoid function is indicated by the symbol σ.

Forward pass explained

x is multiplied with w21 to get the input to the hidden layer.

input hidden = w21 ∗ x+ b1

5

At the hidden layer we apply the activation funtion sigmoid(σ)

ouput hidden = sigmoid(input hidden)

The output from the hidden layer is then multiplied by w32 to get the input to the output
layer.

input outlayer = w32 ∗ ouput hidden+ b2

Finally, we apply the activation at the output layer to get the final output.

output = sigmoid(input outlayer)

Before looking at backpropagation , we define the cost function as Mean Square Error (MSE). Cost
function is a measure of how accurate the network is. A large value of cost function means that
the network is inaccurate. Hence, the aim of backpropagation is to manipulate the weights and the
biases in such a way that the value of cost function reduces.

Backpropagation :

Again we start by defining a few terms:

• C is the cost function.

• δl2 and δl1 are the errors at the output and the hidden layers respectively.

• y is the actual output vector for input x

Backpropagation explained
The cost can be found as follows:

C =
1

2

∑
(y − output)2

We take the gradient of the cost function with respect to output:

∇outputC = output− y

Then the error at the last layer can be found as:

δl2 = ∇outputC � σ,(input outlayer)

Once the error at the last layer is found, the values by which w32 and b2 have to be changed can be
found as:

db2 = δl2

dw32 = output hidden ∗ δl2

The error at the hidden layer can be found as follows:

δl1 = (w32 ∗ δl2) � σ,(input hidden)

And as we have seen in the case of w32 and b2, w21 and b1 can be updated as follows:

db1 = δl1

dw21 = x ∗ δl1

6

Finally we update the weights and the biases:

b1 = b1 − ηdb1
w21 = w21 − ηdw21

b2 = b2 − ηdb2
w32 = w32 − ηdw32

where η is the learning rate.

This completes both the forward pass and the backward pass for neural networks. However,
the network isn’t completely trained yet. This process has to be done multiple times till the error
converges and we get a steady error. One way to do it is gradient descent which will be explained
in the next section.

2 Gradient Descent Algorithm

2.1 Training Neural Network

Predictions from an untrained neural network are only as good as random guesses. So effectively
training the neural network to make correct predictions is as important as building a neural network.
There are different algorithms by which a neural network can be trained and one of the popular
algorithms is the Gradient Descent Algorithm. Gradient Descent algorithm adjusts the weights in
such a way that the gradients of the loss function with respect to weights are minimized. If we
assume a convex objective function - an objective function where there is only a global minimum,
gradient descent moves in the direction of the negative derivative of the objective function. In this
way gradient descent always minimizes the function and it reaches a global optimum if it is a convex
function. The algorithm is iterative where the gradients with respect to each examples are added
and the final value is subtracted from the objective function which is considered as a step towards
the optimum value. As the number of forward and backward pass increases, the weights are adjusted
in such a way that the data in the input space are mapped to the correct data in the output space.

2.2 Learning Rate

The parameters while training a network that are tuned to specific data are referred to as hyper
parameters. Learning rate determines the length of the step after each iteration (through all the
data) towards the direction of minimum loss. Higher the learning rate, faster the learning would be
but at the same time, higher learning rate causes oscillations near the optimal point. Lower learning
rate causes slower learning while helping to reach closer to the optimal point. There is usually a
trade-off between magnitude (time for convergence) and the how close the weights need to be in
their optimal value. Cross-validation is the process by which ideal value for learning rate can be
chosen.

2.3 Cross-validation

Cross-validation is the process of choosing a particular value of a hyper parameter while training a
machine learning model such that benefits from it are maximized. For different values of learning
rate, the loss after 10 epochs are determined (an epoch is computing the forward and backward pass
through the entire training set once) and the learning rate with the minimum loss is chosen for the
data in hand.

7

2.4 Weights Initialization

Weights initialization is an important process in training a neural network. If the weights are
initialized to the same value or closer, there would be no or not much learning after every back
propagation. Again, there are different ways by which the weights can be initialized, and we have
chosen to implement normal weights initialization. In this method, the values are drawn from a
particular normal distribution whose mean and variance are specified beforehand which also become
hyper parameters for the network.

Algorithm 1 Gradient Descent Algorithm

while loss not converged do
weights prev ← initialize
for for each data point do

forward pass
compute loss using the loss function Mean Square Error(MSE)
compute gradient of the loss with respect to weights (backward pass)
gradient total← gradient total + gradient for each data point

end for
weights next← weights prev − (learning rate ∗ gradient total)

end while

3 Serial Implementation of neural networks

3.1 Dataset

We implemented a neural network to classify the famous ’Modified National Institute of Standards
and Technology’ MNIST dataset. It is a database of handwritten digits which is commonly used to
train image recognition and classification systems.Only a subset of 10,000 images was used in this
project.Each image is 28x28. Training and testing were carried out on the same set of images.

3.2 Preprocessing in python

A python code was written to pre-process the data into the format that is needed for our neural
network implementation. The following things were implemented:

• 28x28 image matrix is converted into 784x1 vector.

• Since there are 10 digits each label is converted into a one-hot vector.

• As explained in section 2.4, the initial selection of weight is important. Weights have been
initialized from a normal distribution in the code.

The processed inputs, labels and weights are stored in file.txt, onehot.txt, weights 1.txt, weights 2.txt
respectively.

3.3 Helper functions in C

As seen in section 1.2, there are a lot of matrix operations in forward pass and backward pass.The
following table shows the number of times, each matrix operation is needed.

8

Matrix Operation Number of times used
Addition 2
Subtraction 6
Element-wise multiply 7
Multiplication 5
Transpose 2

Since, these operations are used many times they are written as functions. Apart from these
operations, functions are also written for sigmoid activation and derivative operations.

3.4 Main function in C

Read files :
The text files obtained after preprocessing from python are read first and stored in arrays.
There is an array for input,labels and both the weights respectively.

Iteration through images :
From the input array each input image is retrieved. Similarly the one hot vector associated
with each image is retrieved. The forward pass and backpropagation is completed with one
image using the helper functions and the weights and the biases are updated.
The number of epochs is a hyper-parameter that can be adjusted.
One can find that the neural network is learning is by observing the MSE. In our implemen-
tation the loss reduces with every epoch.

4 Parallelization of the Serial Code

In this section we try a few optimization techniques such as:

• Loop unrolling

• Intel intrinsics

• OpenMP

• Implementation in CUDA

4.1 Loop Unrolling

We start with the most basic optimization technique called Loop Unrolling.

Loop Unrolling helps in reducing the loop overhead by reducing the number of times the ’loop-end’
condition has to be checked. It also reduces the number of times the loop variable is incremented.
The disadvantage of loop unrolling is increased code size.

Our implementation requires for loops for matrix operations and hence this is a good method to
increase the speed of code execution. Figure 4 shows the way we implement loop unrolling in our
code:

Loop unrolling results :
Loop unrolling was implemented with unroll factor of 4 and 8. Interestingly, better perfor-
mance was observed with unroll factor of 4 rather than the unroll factor of 8. We suspect that
in case of unroll factor 8, the benefit due to less number of ’loop-end’ tests is not significantly

9

Figure 4: unroll snippet

greater than the time taken to execute more instructions. However, both the cases performed
better than the baseline serial code. The results are shown below :

Figure 5: Time taken as the number of epochs increases

10

4.2 Intel Streaming SIMD Extensions(SSE)

In our baseline serial code, for matrix add, subtract and element wise multiplication, we loop through
both the operand matrices element by element. Instead of that we can vectorize this operation by
using Intel SSE [4].
SSE enabled processors have 8 128-bit registers. Each register can therefore store 2 double pre-
cision numbers. In our case, we use 3 such registers, one register each for operand matrices and one
for the result matrix.
SSE allows us to add the numbers stored in the registers in parallel. Thus we add two pairs of dou-
bles at once. This helps in reducing the loop iterations by half and improves the speed enormously.

SSE results :
As described above, we implemented SSE for matrix add, subtract and element wise multiply.
The result of its comparison with the baseline serial code is shown in the figure below:

Figure 6: Time taken as the number of epochs increases

4.3 OpenMP

OpenMP (open Multi-threading) is a multi-threading technique where the master thread creates a
number of slave threads and the work is distributed amongst the slave threads.

In our implementation, we used openMP to parallelize the for loops in the matrix operations.

OpenMP results :
The results obtained by implementing OpenMP weren’t good because the threads were cre-
ated and destroyed for every matrix multiplication operation in each epoch. This overhead
of threads was greater than any benefits achieved due to multi-threading.

11

Figure 7: Time as number of epochs increases

4.4 CUDA implementation

GPUs can be used when same operations have to be performed on huge chunks of data. However
a single core of GPU is slower than a CPU core. In our version of the GPU code, we implement
matrix multiplications on GPU and compare the performance with the serial code.
We used the cuBLAS library for matrix multiplication [5]. However it is important to note that
cuBLAS uses column-first indexing while in C its row-first indexing. Here we explain the cuBLAS
multiplication function that we used:

cublasStatus t cublasSgemm(cublasHandle t handle,cublasOperation t transa, cubla-
sOperation t transb,int m, int n, int k,const float *alpha,const float *A, int lda,const
float *B, int ldb, const float *beta, float *C, int ldc)

The following image shows how we call the gpu function in our code:

Figure 8: GPU implementation snippet

And this is snippet of the our gpu function:

12

As seen in the snippet, it is important to swap the input matrices and set the leading dimensions
of the matrices lda,ldb,ldc properly because cuBLAS follows column major indexing.

CUDA results :
GPU is advantageous only when we deal with huge amount of data. Here we did not have
a lot of data and so the timing overhead of copying the data to the GPU from the host and
copying the data back from the GPU to the host proved to be more than the speedup achieved
and the GPU version performed 10x worse than the CPU version.

5 Summary

• Loop unrolling helped in improving the speed of execution.

• Multithreading methods did not work since the implementation suffered from thread over-
heads.

• GPU implementation suffered from data copy overheads and did not give good results.

• Intel Intrinsics gave the best improvement over serial code since vectorization helped in par-
allelizing the matrix operation functions.

Therefore we conclude that multi-threading options have to be carefully chosen and that the best
option to optimize neural networks according to us is to vectorize the code wherever possible.

References

[1] Wikimedia. https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg.

[2] Blog explaining neural net. http://blanco.io/blog/machine-learning/

neural-networks-and-backpropagation/.

[3] Michael A. Neilson. Neural networks and deep learning. 2015.

[4] Intel intrinsics documentation. https://software.intel.com/en-us/articles/

introduction-to-intel-advanced-vector-extensions.

[5] Cublas documentation. http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm.

13

https://commons.wikimedia.org/wiki/File:Artificial_neural_network.svg
http://blanco.io/blog/machine-learning/neural-networks-and-backpropagation/
http://blanco.io/blog/machine-learning/neural-networks-and-backpropagation/
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm

6 Appendix

Description of the files and instructions to run them :

• The serial implementation can be found in the serial folder. Execute the make command
and then execute the ./serial neural command.

• Loop unrolled version of the code can be found in the loop unrolling folder. Execute
the make command and then execute the ./loop unroll neural command.

• SSE version of the code can be found in the intrinsics serial folder. Execute the make
command and then execute the ./intrinsics neural command.

• The OpenMP version of the code can be found in the openmp folder. Execute the
following commands to run the code:

gcc -fopenmp openmp neural network.c -o neural
export OMP NUM THREADS=2
./neural

• The CUDA version of the code can be found in the GPU folder. To run the file use the
following commands on the shared computing cluster(scc):

qrsh -l gpus=1 -l gpu c=3.5
nvcc gpu.cu -o gpu -lcublas
./gpu

14

	Neural Networks
	Introduction
	Neural network working

	Gradient Descent Algorithm
	Training Neural Network
	Learning Rate
	Cross-validation
	Weights Initialization

	Serial Implementation of neural networks
	Dataset
	Preprocessing in python
	Helper functions in C
	Main function in C

	Parallelization of the Serial Code
	Loop Unrolling
	Intel Streaming SIMD Extensions(SSE)
	OpenMP
	CUDA implementation

	Summary
	Appendix

