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Abstract

The focus of this project is the Variational Inference (VI)
method and some of its applications. In particular, mean-
field variational inference is used to find an estimate of the
posterior distribution for each of the latent variables. This
goal is obtained by decreasing Kullback-Leibler divergence
as a measure of distance between the posterior distribution
of the latent variables and a candidate distribution from the
mean field of distributions. We begin by explaining the idea
behind the Expectation-Maximization algorithm, and later
we draw the analogy between the EM and the VI methods.
Later on, we implement the VI on the univariate and mul-
tivariate Gaussian mixture models. In the end, we try to
segment images based on their color map.

1. Introduction
1.1. Motivation

In Bayesian inference, the posterior distribution of a
latent random variable z, given evidence x is given by:

p(z|x) =
p(x|z) p(z)

p(x)
(1)

The denominator in 1 is the marginal distribution of evi-
dence x, and calculating it becomes intractable in high di-
mensions. It is a common approach to find the posterior
distribution using methods in which finding p(x) is not re-
quired.

One of such techniques is to use Markov Chain Monte
Carlo (MCMC) method for generating samples from the la-
tent variables based on the current evidence x. This method
however, takes a lot of time to converge and needs con-
siderations for reducing rejections in the sampling process.
Variational Inference is an alternative technique that uses
KL-divergence as a measure of distance between two dis-
tributions, and tries to minimize this objective function for
different families of parametric (and also non-parametric)
distributions in order to find the closest one to the posterior.

Variational Inference uses a special family of distribu-
tions to find the best estimate of the posterior distribution.

In order to measure how close the estimated distributions
is to the actual distribution, it uses Kullback Leibler diver-
gence as a measure of distance.

1.2. KL divergence

KL divergence is a measure (but not a metric) of the non-
symmetric difference between two probability distributions
p and q. For a discrete model, it is defined by:

KL(p||q) =
∑
i

p(i) ln
p(i)

q(i)
(2)

For the continuous models, it is defined to be:

KL(p||q) =

∫
p(x) ln

p(x)

q(x)
dx (3)

From the Gibbs’ equation, we know that:

KL(p||q) ≥ 0 (4)

2. Expectation Maximization Algorithm
We begin this chapter by introducing our notation for the

known and unknown data. Our feature matrix is consisted
of N data in RD, and we have N latent variables in RK .
We can think of the latent variables as the soft memberships
or responsibilities in the GMM(Gaussian Mixture Model).
Model parameters are shown by θ. In order to rule out un-
favored model fitting, such as finding zero variances for a
Gaussian distribution in the univariate GMM, we assign a
prior for these parameters. We also assume that the latent
variables are hidden from us, and our goal is to find both
the model parameters and latent variables in order to cluster
our feature matrix.
To sum up:

X ∈ RN×D Observed data

Z ∈ RN×K Latent variables
θ ∼ π(θ) Prior assumption
{X,Z} Complete dataset
X Incomplete dataset
Our knowledge (based on model) p(Z|X,θ)
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3. General EM Algorithm
EM algorithm is an iterative algorithm that finds ML or

MAP estimates of parameters in statistical models where
the model depends on unobserved latent variables. EM is
consisted of two recurring steps:

• Expectation: creates a function for the expectation of
the log-likelihood evaluated using the current estimate
for the parameters.

• Maximization: computes parameters maximizing the
expected log-likelihood found on the E step.

Likelihood of the complete data is given by the expression:
p(X,Z|θ), but since the latent variables are hidden it is not
possible to maximize it. Instead we try to maximize the
likelihood function ln p(X|θ). In order to do so, EM uses
the following trick:

ln p(X|θ) = ln
{∑

Z

p(X,Z|θ)
}

(5)

where instead of the likelihood function, it uses the expecta-
tion over the joint distribution of the features and the latent
variables conditioned over the model parameters θ. Now
we make use of the following lemma to relate this trick to
an approximate distribution.

Lemma 3.1. Likelihood function given in (5) can be written
as:

ln p(X|θ) = L(q,θ) + KL(q||p) (6)

where

L(q,θ) =
∑
Z

q(Z)ln
{p(X,Z|θ)

q(Z)

}
(7)

KL(q||p) = −
∑
Z

q(Z)ln
{p(Z|X,θ)

q(Z)

}
(8)

Proof.

ln p(x) = ln
p(x, z)

p(z|x)

→ E[ln p(x)] =

∫
q(z) ln

p(x, z)

p(z|x)
dz

=

∫
q(z) ln

p(x, z)

p(z|x)
.
q(z)

q(z)
dz

→ E[ln p(x)] =

∫
q(z) ln

p(x, z)

q(z)
dz+∫

q(z) ln
q(z)

p(z|x)
dz

By conditioning all of the above probabilities over θ, the
proof becomes complete.

Figure 1. Relation between the log of likelihood and the ELBO
and KL divergence (figure from [1])

Figure 2. The two steps in the EM algorithm. Left figure shows
the E step and the right figure shows the M step. (figures from [1])

Based on the Gibbs’ inequality, we know that the KL
divergence is always nonnegative, hence the term L(q,θ),
called Expectation Lower Bound or ELBO is always less
than or equal to the log of likelihood.

KL(q||p) ≥ 0→ L(q,θ) ≤ ln p(X|θ)

and the equality holds if and only of the estimated distribu-
tion over the latent variables q(Z) is equal to the posterior
distribution p(Z|X,θ).

KL(q||p) = 0→ q(Z) = p(Z|X,θ)

This relation is best described in Fig. 1. Now, we revisit the
EM algorithm and give a more formal description:

• E step: L(q,θold) is maximized with respect to
q(Z) while holding θold fixed, by setting q(Z) =
p(Z|X,θold). In this step, KL(q||p) becomes zero.

• M step: the distribution q(Z) is held fix and ELBO
L(q,θ) is maximized with respect to θ to give the new
estimate of the model parameters θnew. By maximiz-
ing the ELBO, and using the fact that KL divergence
is always non-negative, we can see that the log of like-
lihood increases at each iteration until it converges.

These two steps are depicted in Fig. 1. In the next section,
we will use these results to estimate the model parameters
and the soft membership values for the Gaussian Mixture
Model.
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4. EM Algorithm for Gaussian Mixture Model

We include the EM algorithm for GMM in this report so
as to be compared with the VI algorithm in section 8. The
evidence p(X) of a Gaussian mixture model is given by:

p(x) =
∑
z

p(z)p(x|z) =

K∑
k=1

πkN (x|µk,Σk) (9)

Data we have here is given by the set {x1, . . . ,xN}. We use
the matrix X ∈ RN×d where the nth row of this matrix is
given by x>n . Latent variables of this problem are znk which
determine to which cluster a point belong, i.e.

∑
k znk = 1.

Now we introduce the soft membership formally:

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)
K∑
j=1

p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)
K∑
j=1

πjN (x|µj ,Σj)

(10)

where πk is the prior probability of zk = 1 and γ(zk) is
the corresponding posterior probability once we have ob-
served x. Again, we use the latent variable matrix given
by: Z ∈ RN×K . In the M step, best estimate of the model
parameters, which in this case would be the means and the
covariance matrices, is given by the argmin of the following
function:

Q(θ,θold) = EZ

[
ln
{
p(X,Z|θ)π(θ)

}∣∣∣θold]
=
∑
Z

p(Z|X,θold)ln
{
p(X,Z|θ)π(θ)

}
(11)

θnew = arg min
θ

Q(θ,θold) (12)

Hence, the complete algorithm would be:

Algorithm 1 EM Algorithm for Gaussian Mixture Model
1: Choose an initial θold

2: E step: Evaluate p(Z|X,θold)
3: M step: Evaluate θnew = arg min

θ
Q(θ,θold)

4: θold ← θnew

5: if log likelihood or θ didn’t converge then return to 2
6: end if
7: return Z,θnew

5. Variational Inference

The basic idea of VI is to take a family of distributions
D and find which amongst those distributions best approx-
imates the posterior distribution that we need[3]. VI uses
Kullback-Leibler (KL) divergence as a measure of the dif-
ference between the approximate and the actual distribu-
tions. Using the same trick that was introduced in the sec-
tion 2, we can write:

ln p(X) = L(q) + KL(q||p) (13)

Where L is called Evidence Lower Bound or ELBO, and
given by:

L(q) =
∑
Z

q(Z)ln
{p(X,Z)

q(Z)

}
(14)

and the KL divergence is defined between q(Z) and
p(Z|X):

KL(q||p) = −
∑
Z

q(Z)ln
{p(Z|X)

q(Z)

}
(15)

VI works on the mean field of distributions, sometimes
called factorized distributions, and therefore q will be of the
following form:

q(Z) =

M∏
i=1

qi(Zi) (16)

Since KL-divergence is always non-negative and ln p(X) is
a constant, maximizing the Evidence Lower Bound (ELBO)
term will automatically minimize the KL divergence[2].
The ideal approximate distribution will make the KL diver-
gence zero.
The reason behind using factorized distribution is that they
make optimization much easier and there would be a gen-
eral closed form solution for the optimal distribution q?i (Zi)
in each iteration.

Lemma 5.1. For this family of distributions, because of
their independence the best solution for each factor qj is
given by:

q?j (Zj) =
exp(Ei6=j [ln p(X,Z)])∫

exp(Ei 6=j [ln p(X,Z)]dZj)
(17)

where Ei 6=j indicates that the expectation is taken over all
the distributions expect jth distribution.
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Proof.

L(q) =

∫
q(Z)ln

{p(X,Z)

q(Z)

}
dZ

=

∫ {∏
i

qi(Zi)
(

ln p(X,Z)− ln q(Z)
)}
dZ

=

∫ {∏
i

qi(Zi)
(

ln p(X,Z)−
∑
i

ln qi(Zi)
)}
dZ

=

∫
qj(Zj)

{∫ ∏
i 6=j

qi(Zi)ln p(X,Z)dZi

}
dZj

−
∫
qj(Zj)ln qj(Zj)dZj + const.

=

∫
qj(Zj)ln p̃(X,Zj)dZj

−
∫
qj(Zj)ln qj(Zj)dZj + const.

where p̃(X,Zj) = Ei 6=j [ln p(X,Z)] + const.

=

∫ ∏
i 6=j

qi(Zi)ln p(X,Z)dZi

→ L(q) = KL(qj(Zj)||p̃(X,Zj)) + const.

Therefore, the minimum happens when qj(Zj) =
p̃(X,Zj). In that case we have:

ln q?j (Zj) = Ei 6=j [ln p(X,Z)] + const.

→q?j (Zj) ∝ exp
{
Ei6=j [ln p(X,Z)]

} (18)

By normalizing this, the proof becomes complete.

6. Example explaining VI
Here we implement VI to find the distribution of mean µ

and precision λ (inverse of variance) given the data D of a
univariate gaussian distribution [4].Normal distribution and
gamma distribution are assumed as priors to the mean and
the precision respectively. Mathematically,

X ∼ N (µ, λ−1)

p(µ, λ) = N(µ|µ0, (κ0λ)−1)Ga(λ|a0, b0)

In accordance with the mean field assumption, the family of
distribution chosen to approximate p(µ, λ|D) is:

q(µ, λ) = q(µ)q(λ)

As seen in equation 18, the best distribution for q(µ) is
given by:

ln qµ(µ) = Eqλ [lnP (µ, λ,D)]

Solving the expectation, we get:

qµ(µ) = (N)(µ|µN , k−1
N ) (19)

Similarly,for q(λ) it can be found that:

qλ(λ) = Ga(λ|aN , bN ) (20)

The parameters of these distributions are given by:

aN = a0 +
N + 1

2

bN = b0 + k0(
1

kN
+ µ2

N + µ2
0 − 2µNµ0)

+
1

2

N∑
i=1

(x2
i +

1

kN
+ µ2

N − 2µNxi)

µN =
k0µ0 +Nx̄

k0 +N

kN = (k0 +N)
aN
bN

From the equations it is clear that aN and µN just de-
pend on a0, µ0, k0. However, the optimal values of bN , kN
are found by iterative technique called Coordinate Ascent
Variational Inference (CAVI) which is described as follows:

Algorithm 2 Coordinate Ascent Algorithm
1: Find µ0, k0, a0, b0
2: Using the intial values find µN , kN , aN , bN
3: Evaluate ELBO
4: if ELBO didn’t converge then return to 2
5: end if

The ELBO plot for the example we ran is given in figure3

Figure 3. Variation of ELBO with iterations
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7. Implementation of VI on Univariate GMM

We have implemented VI using MATLAB for unit-
variance univariate mixture of Gaussians. We considered
a mixture of K Gaussian distributions with their means con-
sidered to have a prior Gaussian distribution of the form
N (0, σ2) and σ2 is a hyper-parameter. Each data point xi
is assigned to a cluster ci which is assumed to follow a cat-
egorical distribution over all the clusters. Each component
of the mixture is also a univariate Gaussian distribution of
the form N (cTi µ, 1).

µk ∼ N (0, σ2) k = 1, · · · ,K
ci ∼ Categorical(1/K, · · · , 1/K) i = 1, · · · , n

xi|ci,µ ∼ N (cTi µ, 1) i = 1, · · · , n

The joint distribution of the latent variables z = {µ, c} and
the data x is given by the following equation,

p(µ, c,x) = p(µ)

n∏
i=1

p(ci)p(xi|ci,µ)

The variational family of distributions after mean-field as-
sumption for the mixture model is defined as follows,

q(µ, c) =

K∏
k=1

q(µk;mk, s
2
k)

n∏
i=1

q(ci;ϕi) (21)

mk and s2
k are the mean and variance of kth Gaussian dis-

tribution in the family of variational distributions. ϕi repre-
sents the K-vector probability of assigning each data point
i to a particular Gaussian distribution. Evidence Lower
Bound (ELBO) for the mixture of univariate Gaussian is
given by the equation,

ELBO(m, s2,ϕ) = k

K∑
k=1

(
E[ ln p(µk);mk, s

2
k]− E[ln q(µk;mk, s

2
k)]
)

+

n∑
i=1

(
E[ ln p(ci);ϕi] + E[ ln p(xi|ci, µ);ϕi,m, s2]

− E[ ln q(ci;ϕi)]
)

(22)

Figure 4. Univariate GMM data generated by MATLAB with four
clusters

Figure 5. Convergence of ELBO

where

E[ln p(µk)] = −1

2
ln 2πσ2 − 1

2σ2
(s2
k +m2

k)

E[ln q(µk;mk, s
2
k)] = −1

2
ln 2πs2

k −
1

2

E[log q(ci;ϕi)] = −
K∑
k=1

ϕik lnϕik

E[ln p(ci;ϕi)] = ln
1

K

E[ln p(xi|ci;µ);ϕi,m, s2] = −1

2
[(ϕTi m)2 + ϕTi s2 + (ϕTi m)2

− 2ϕTi m2]
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Figure 6. Means of the GMM estimated by VI for K=8

8. Implementation of VI on Multivariate GMM

The only difference in the multivariate Gaussian Mix-
ture Model from the univariate case is that the data is rep-
resented by a mixture of Gaussian each with its own mean
and covariance matrix. The procedure is similar to what
we have done before - assuming a prior on the latent vari-
ables, deriving the mean field approximation and finally de-
riving the objective function. Then, using CAVI algorithm
each parameter can be maximized with respect to other pa-
rameters resulting in the maximization of Evidence Lower
Bound (ELBO). The specification of the data is as before
with X = {x1, ..., xN} and latent variables corresponding
to each data point is given by Z = {z1, ..., zN}. The under-
lying GMM of the data is given by,

p(X|Z,µ,Λ) =
N∏
n=1

K∏
k=1

N (xn|µ,Λ−1)znk (23)

The distribution of Z given the membership coefficients(π)
is given by (a multinomial distribution).

p(Z|π) =

N∏
n=1

K∏
k=1

πznkk (24)

Now, for assuming priors on the latent variables, we assume
a Dirichlet prior on the membership coefficients given by,

p(π) = Dir(π|α0) = C(α0)

K∏
k=1

πα0−1
k (25)

and a Gaussian-Wishart Prior on the mean and precision
given by,

p(µ,Λ) = p(µ|Λ)p(Λ) (26)

=

K∏
k=1

N (µk|m0, (β0Λk)−1)W (Λk|W0, ν0)

(27)

By mean-field variational inference, we can assume all the
latent variables to be independent of each other.

q(Z,π,µ,Λ) = q(µ,π,Λ)q(Z) (28)

With respect to Z, the objective function that maximizes
ELBO is given by,

ln q∗(Z) = Eπ,µ,Λ[ln p(X,Z,π,µ,Λ)] + const (29)

ln q∗(Z) = Eπ[ln p(Z|π)]+Eµ,Λ[ln p(X|Z,µ,Λ)]+const
(30)

Similarly for membership coefficients, mean and precision,
the objective functions are,

ln q(π,µ,Λ) = q(π)

K∏
k=1

q(µk,Λk) (31)

q∗(π) = Dir(π|α) (32)

q∗(µk,Λk) =

K∏
k=1

N (µk|mk, (βkΛk)−1)W (Λk|Wk, νk)

(33)
Implementation of CAVI algorithm involves cycling
through maximizing all of these objective function one at
a time till there is no further changes to the ELBO (the time
at which convergence is achieved).

9. Image segmentation
Image segmentation is the process of partitioning image

into regions which are visually similar in appearance. We
converted the image from a three-dimensional representa-
tion (i.e) height X width X channels into a two-dimensional
representation (i.e) pixel X rgb_value where each pixel can
be represented in a three-dimensional space. Although this
is not a great way to do image segmentation, we tried clus-
tering the pixels based on their rgb values. As expected,
the results were not great because the spatial locality is lost
during the change of dimensions of the image.
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11. Appendix

11.1. plots for simple gaussian distribution de-
scribed in section 6

Plots for 4th,5th and the last iterations in figure:

Figure 7. 4th iteration

Figure 8. 5th iteration

Figure 9. last iteration
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11.2. plots for multivariate gaussian mixtures de-
scribed in section 8

Figure 10. 2nd iteration

Figure 11. 14th iteration

Figure 12. 22nd iteration

Figure 13. 51th iteration
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11.3. image segmentation results

Figure 14. 1st image

Figure 15. 2nd image

Figure 16. 3rd image

Figure 17. 4th image
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